5,543 research outputs found

    Separability Criteria and Entanglement Measures for Pure States of N Identical Fermions

    Full text link
    The study of the entanglement properties of systems of N fermions has attracted considerable interest during the last few years. Various separability criteria for pure states of N identical fermions have been recently discussed but, excepting the case of two-fermions systems, these criteria are difficult to implement and of limited value from the practical point of view. Here we advance simple necessary and sufficient separability criteria for pure states of N identical fermions. We found that to be identified as separable a state has to comply with one single identity involving either the purity or the von Neumann entropy of the single-particle reduced density matrix. These criteria, based on the verification of only one identity, are drastically simpler than the criteria discussed in the recent literature. We also derive two inequalities verified respectively by the purity and the entropy of the single particle, reduced density matrix, that lead to natural entanglement measures for N-fermion pure states. Our present considerations are related to some classical results from the Hartree-Fock theory, which are here discussed from a different point of view in order to clarify some important points concerning the separability of fermionic pure states.Comment: 6 pages, 0 figure

    Complexity analysis of Klein-Gordon single-particle systems

    Full text link
    The Fisher-Shannon complexity is used to quantitatively estimate the contribution of relativistic effects to on the internal disorder of Klein-Gordon single-particle Coulomb systems which is manifest in the rich variety of three-dimensional geometries of its corresponding quantum-mechanical probability density. It is observed that, contrary to the non-relativistic case, the Fisher-Shannon complexity of these relativistic systems does depend on the potential strength (nuclear charge). This is numerically illustrated for pionic atoms. Moreover, its variation with the quantum numbers (n, l, m) is analysed in various ground and excited states. It is found that the relativistic effects enhance when n and/or l are decreasing.Comment: 4 pages, 3 figures, Accepted in EPL (Europhysics Letters

    Multilingual Lexical Semantic Resources for Ontology Translation

    Full text link
    We describe the integration of some multilingual language resources in ontological descriptions, with the purpose of providing ontologies, which are normally using concept labels in just one (natural) language, with multilingual facility in their design and use in the context of Semantic Web applications, supporting both the semantic annotation of textual documents with multilingual ontology labels and ontology extraction from multilingual text sources

    Information theory of quantum systems with some hydrogenic applications

    Full text link
    The information-theoretic representation of quantum systems, which complements the familiar energy description of the density-functional and wave-function-based theories, is here discussed. According to it, the internal disorder of the quantum-mechanical non-relativistic systems can be quantified by various single (Fisher information, Shannon entropy) and composite (e.g. Cramer-Rao, LMC shape and Fisher-Shannon complexity) functionals of the Schr\"odinger probability density. First, we examine these concepts and its application to quantum systems with central potentials. Then, we calculate these measures for hydrogenic systems, emphasizing their predictive power for various physical phenomena. Finally, some recent open problems are pointed out.Comment: 9 pages, 3 figure

    Statistical measure of complexity for quantum systems with continuous variables

    Full text link
    The Fisher-Shannon statistical measure of complexity is analyzed for a continuous manifold of quantum observables. It is probed then than calculating it only in the configuration and momentum spaces will not give a complete description for certain systems. Then a more general measure for the complexity of a quantum system by the integration of the usual Fisher-Shannon measure over all the parameter space is proposed. Finally, these measures are applied to the concrete case of a free particle in a box.Comment: 6 pages, 5 figures. Published versio
    corecore